Loop function

The loop function consists of the following syntax:
loop (id_start, i, i_start, i_stop, i_step, x_expr, y_expr, z_expr)
It is used in generating the point coordinates instead of the typical id x y z command.
In the bracket we need to consecutively define: the initial poit index, the loop variable, its initial and terminal value, the iteration step, the x -axis expression, the y -axis expression and the z -axis expression.
We will use the loop function to outline a reflexing pannel. Given this purpose, we will generate a new model geometry file and then define the ABS, CORNERS and PLANES sections.
This situation is depicted in the following picture:

Consecutive points defining the pannel intersection (in red) are located every 9 degrees in a circle of "blue" radius. Green marks the hights needed on the z-axis, the coordinates of the y-axis can be obtained using the Pitagorean Theorem. In the beginning we need to generate two curves such that the x -coordinate varies. We use the loop command syntax and we enter the following into the CORNERS section:
$\operatorname{loop}(1, \mathrm{i}, 0,45,9,-4,2 * \cos (\mathrm{i}), 2 * \sin (\mathrm{i}))$
$\operatorname{loop}(7, i, 0,45,9,4,2 * \cos (\mathrm{i}), 2 * \sin (\mathrm{i})$
A loop-like function will help us consecutively create the areas we need:
[*5 1 panel // 1287 / panel]
The above means that the CATT-Acoustic will produce 5 areas - one of them, indexed as 1 , bases on points 1287 . For the following planes the number of each point increases by 1 . The syntax (the double ' $/$ ' sign) that is implemented is an abbreviation. In its original form, the line looks like below:
[*5 1 panel /1 11 1/ 1287 / panel]
Finally, we still need a material of low absorption coefficient to cover the area:
ABS panel <15034514>
Eventually our PLANE.GEO file looks like:
ABS panel <15 034514 >
CORNERS
loop(1,kat, 0,45,9,-4,2*cos(kat)3*sin(kat))
loop(7,kat,0,45,9,4,2*cos(kat),3*sin(kat))

PLANES

[*5 1 panel // 1287 / panel]
And its model visualisation:

